Основы аэрокосмофотосъемки, факты аэросъемки.

Основы аэрокосмофотосъемки

О. Н. Калинина

Калинина О. Н., Судариков В. Н.

Сущность аэрометодов заключается в использовании авиации для улучшения качества и ускорения выполнения различных видов наземных работ. Помимо геологии аэрометоды применяются в различных областях народного хозяйства: сельском хозяйстве, лесном ведомстве, топографии, археологии, географии, строительстве крупных объектов (мостов, ГЭС, АЭС, магистралей, трубопроводов и т. д.), военном ведомстве и др. Использование аэрометодов в военном ведомстве дало существенный толчок в их развитии.

Аэрометоды при геологических исследованиях основываются на проведении:

а) аэровизуальных геологических наблюдений;

б) проведения аэрофотосъемки, аэрогеофизических исследований, проводимых с помощью геофизических приборов, установленных на борту самолета.

Перечисленные виды работ, которые могут производиться как раздельно, так и в различных комбинациях, составляют вместе с наземными геологическими работами единый комплекс.

Аэрофотогеологический метод в виду высокой информативности является наиболее широко применяемым методом при геологической съемке, предусматривающий геологическое дешифрирование аэроснимков. Фотоснимки, в принципе, весьма информативный материал. Даже если взять бытовые фотоснимки. По снимку можно без усилий определить к примеру пол, возраст, масть, расу, общий облик людей, а специалисты определят даже болезнь запечатленного человека, его характер.

Аэроснимки – это объективный дополнительный материал, необходимый для решения геологических задач.

1 История развития аэрофотосъёмки

1.1 Начальный этап использования фотосъёмок в геологии

С развитием авиации применение аэрофотосъемок быстро расширилось. Значительным событием было аэрофотосъемка Больших Медвежьих озер в Северной Америке в 1933 г., позволившие обнаружить крупные дайки рудоносных пегматитов.

Применение аэрофотосъемки при геологических исследованиях в нашей стране было осуществлено в начале 30-х годов по инициативе академика А.Е. Ферсмана. Более детально при этом были изучены нефтеносные районы Ферганы и Азербайджана. Впоследствии применение аэрофотосъемки продолжалось развиваться, охватывая все большие регионы в нашей стране. С помощью аэрометодов в Северной Америке были открыты месторождения железа, меди, ртути (статья В. Левингса 1945 г.). Но это были разрозненные случаи применения аэрометодов. В целом аэрометоды сыграли выдающуюся роль в изучении громадных пространств Крайнего Севера – заполярных областей СССР, Канады, Аляски, а так же африканских и азиатских пустынь. Новая методика нашла широкое применение во всех отраслях практической геологии, а также в поисковой и инженерской, открыв дополнительные возможности для прогноза. В пятидесятых годах в США проводилась аэросъемка с целью поисков нефтяных структур даже на мелководных участках моря.

В 1954 г. было постановление Министерства геологии и охраны недр СССР об обязательном применении аэрометодов при производстве геологических работ.

1.2 Исследования Земли из космоса

По объему используемой информации первое место занимает метеорология. Стало возможным сопоставить весь накопленный опыт наземной метеорологии с данными, полученными с искусственных спутников земли, и убедились в объективности существовавших гипотез. Стало возможным более оперативно и с меньшими затратами составлять прогнозы, а также более уверенно составлять долгосрочные прогнозы.

В сельском хозяйстве космическая информация дает возможность вести учет и оценку земель, следить за состоянием сельскохозяйственных угодий, поражения их вредителями.

Одна из проблем, которая стоит перед лесным хозяйством страны – разработка учета и составления карт лесов – уже решается с помощью космических съемок. Это позволяет учитывать лесные ресурсы, обнаруживать очаги лесных пожаров, учитывать поврежденные участки.

С применением спутников ведутся работы по исследованию Мирового океана. Измеряется температура поверхности океана, наблюдаются морские течения и скорость их, изучается ледяной покров и загрязнения вод. Спутниковая информация может использоваться для поиска промысловых скоплений рыбы по акватории Мирового океана.

Специальные спутники связи дают возможность вести и принимать передачи из самых отдаленных уголков планеты. В космосе проводятся эксперименты по различным направлениям науки и техники.

На глобальном уровне изучение Земли возможно только с помощью космической информации. Это позволяет изучать нашу планету как единый механизм и перейти к описанию локальных особенностей ее строения, исходя из нового уровня наших знаний.

Возникла новая наука – космическое землеведение, часть которой – космическая геология. Она изучает вещественный состав, глубинную и поверхностную структуру земной коры, закономерности размещения полезных ископаемых.

1.3 Основные этапы развития космонавтики

12 апреля 1961 года состоялся полет в космическом пространстве первого космонавта Ю.А. Гагарина на корабле «Восток». Полет продолжался 108 мин. 6 августа 1961 года летчик-космонавт Г. Титов впервые сфотографировал Землю из космоса. Эту дату можно считать началом планомерной космической фотосъемки Земли. Первая орбитальная станция «Салют» была запущена в апреле 1971 года и затем станция второго поколения «Салют-6», запущенной в сентябре 1977 года. Последняя имела 2 стыковочных узла. На нее периодически поставлялись грузы, в т. ч. и научная аппаратура. На «Салют-6» обитали многочисленные интернациональные экипажи.

19 апреля 1982 г. на орбиту выведена долговременная станция «Салют-7» более модернизированная.

Важным направлением дальнейших исследований стало изучение с помощью космонавтики планет земной группы и других небесных тел Галактики. Исследованы Луна, Венера, Марс. 14 сентября 1959 года наша автоматическая станция «Луна-3» достигла поверхности Луны. В 60-х годах американцы совершили высадку на Луну.

Одновременно в настоящее время в космическом пространстве находится свыше 2000 ИСЗ.

1.4 Аэрогеология в США

Контрольные вопросы

2. Аэрогеология в США.

3. Применение результатов исследования Земли из Космоса.

4. День космонавтики.

2 Аэрофотосъёмка

2.1 Аэровизуальная съёмка

2.2 Перспективная аэрофотосъёмка

При этом оптическая ось фотоаппарата направлена почти перпендикулярно на крутую плоскость объекта.

2.3 Планово-площадная аэрофотосъёмка

Площадная аэрофотосъемка проводится при постоянной высоте полета прямолинейными, параллельными, перекрывающими друг друга маршрутами. Продольное перекрытие по маршруту постоянно и обычно составляет 60 %. Каждая точка снимка вблизи центра имеет тройное перекрытие, что позволяет стереоскопически рассматривать объемную модель местности. Перекрытия снимков параллельного смежного маршрута называется поперечным перекрытием. Оно должно быть постоянным и обычно равно 30 %.

2.4 Спектрозональная съёмка

Спектрозональная съемка заключается в фотографировании объектов в различных зонах спектра, включая невидимые ультрафиолетовую и инфракрасные зоны. Этот вид съемки основан на свойстве объектов в неодинаковой степени отражать различные лучи спектра. При перекрытии друг друга этих цветных пленок на одном снимке получаются перекрывающие друг друга изображения в условных цветах, что значительно увеличивает контрастность цветного изображения деталей объекта.

2.5 Обычная аэрофотосъёмка

Для получения аэроснимков разных масштабов съемка производится с различных высот. В этой связи съемки различаются на обычную и высотную. Высоты полетов и масштабы аэроснимков более-менее стандартизированы. При фокусном расстоянии авиафотоаппарата 70 мм получение аэроснимков масштаба 1: 25 000, называемой обычной аэрофотосъемкой; производится на высоте 1 750 м.

Материалы обычной аэрофотосъёмки пользуются большим распространением при выполнении задач картирования в масштабе 1: 50 000 и детальном исследовании ключевых участков.

2.6 Высотная аэрофотосъёмка

Высотная аэрофотосъемка применяется для получения фотоснимков горных районов имелкомасштабных снимков масштаба 1: 100 000 – 1: 300 000. Эти снимки обладают большой обзорностью и позволяют легче выявлять крупные геологические структуры и более надежно их интерпретировать.

2.7 Материалы аэрофотосъёмки

2) репродукции накидного монтажа;

5) фотографические карты.

Аэроснимки (контактная печать с негативов) в соответствии с типом аэрофотоаппарата, имеют форматы 18×18 см и реже 23×23 см и 30×30 см. Они используются в качестве основного документа (как и негативы) для изготовления и составления накидных монтажей, фотосхем, фотопланов, топокарт. На аэроснимках производится вся основная работа по геологическому дешифрированию.

Качество снимков зависит от условий съемки, фотолабораторных работ, обусловливающих светочувствительность, контрастность, разрешающую способность снимка. Геологи используют аэроснимки в качестве временнойтопоосновы до тех пор, пока результаты дешифрирования не будут перенесены на топографическую карту.

В процессе дешифрирования на снимках прослеживается не только линейные границы и оконтуриваются площадные объекты, но и изучаются их объемные формы.

Масштаб на снимках уменьшается от центра снимка к его периферии. На топокартах – ортогональная проекция на всех участках карты масштаб не меняется.

В гористой местности масштабы участков на аэроснимках меняются от вершины до подножья.

Репродукции накидного монтажа изготавливаются с помощью специальных щитов, на которые монтируются снимки. При этом осуществляется контроль правильности аэрофотосъемки. Монтаж производится сплошными трапециями масштаба 1: 100 000 и крупнее. После этого монтаж фотографируется в определенном масштабе (обычно в 3 раза мельче) и печатается в виде репродукции накидного монтажа.

Эта репродукция используется одновременно со снимками и служит геологу для установления положения каждого снимка на изучаемой площади. Репродукция накидного монтажа даёт ясное представление о положении аэросъемочных маршрутов и об ориентировки отдельных снимков по отношению к сторонам света. Фотосхемы представляют собой монтаж отдельных не трансформированных снимков или их частей, изготовленный в виде сплошного мозаичного изображения местности. Масштабы их зависят от масштабов снимков и оформляются в рамках трапеций масштаба 1: 100 000, 1: 25 000, 1: 50 000, 1: 100 000. Точность масштабов фотосхем понижена для холмистых и особенно горных районов, где сказывается искажения за рельеф.

Фотопланы представляют собой фотографическое изображение местности, составленное из приведенных к заданному масштабу трансформированных снимков, смонтированных на геодезически подготовленной жесткой основе. Трансформация снимков заключается в исправлении их искажений по масштабу. Далее на фотоплан тушью наносятся геодезические пункты. В углах рамок трапеции пишутся координаты. Указывается номенклатура планшета.

Фотопланы могут служить промежуточным материалом для составления топографических карт, поскольку они намного точнее, чем фотосхемы. В реальной жизни трудно подобрать идеальный набор материалов аэрофотосъемки. Надо брать и пользоваться тем, что есть.

Топографические карты, составленные на основе аэрофотосъемки, оформляются как обычные топографические планшеты в горизонталях. Они задаются в масштабах 1: 100 000, 1: 25 000, 1: 10 000, 1: 5 000. Существуют «фотокарты», представляющие собой изготовленные литографическим способом топографические планшеты с рельефом в горизонталях и одновременно в более слабых тонах дается фотоизображение данной местности. Это очень удобный материал для геологов.

Часто старыетопокарты, изготовленные наземным способом, не соответствуют снимкам. В таких случаях необходимо изготовление новых топокарт по материалам аэрофотосъемки.

Следует подчеркнуть, что в производственной работе материалы аэрофотосъемки должны применяться одновременно со всеми другими методами и приемами, используемыми при геологической съемке и поисках; материалы аэрофотосъемки не исключает и не заменяет использование других методов геологических исследований. Они дополняют друг друга. Прошло время интуиции в геологическом производстве работ. Хотя тезис «умом и молотком» актуален и сейчас, но без комплекса методов дающих многогранный объективный фактический материал, как геофизика, геохимия, бурение, палеонтология, горные работы, геологические маршруты, опробование, равно как и аэрофотометоды, геологу не обойтись.

2.8 Применение тепловой инфракрасной съёмки в гидрогеологии и инженерной геологии

По происхождению и по характеру теплового контраста можно разделить все гидрогеологические и инженерно-геологические объекты на три большие группы:

1) нагрев объектов внутренним теплом Земли;

2) тепломассопереносом и экзотермическими процессами;

3) нагрев объектов солнечным излучением.

В космической технике стали применять распознающие инфракрасные устройства, которые используют в качестве дешифрировочных признаков спектральные яркости объектов распознавания в различных спектральных диапазонах. При этом в анализе признаков объектов применяются математические методы. Распознаются, в том числе и природные фоновые образования: почва, растительность, песок, снег, вода…

При производстве инфракрасной съемки улавливаются окисление скоплений сульфидов по различию температур со смежными участками; улавливаются выделение углеводородов (выделяется тепло при разложении их микробами), но это в основном заглушается другими факторами.

На Камчатке улавливают активность вулканов, гидротермальные процессы, гейзеры. Зоны разломов видны на рудных полях, особенно вмещающих воды в трещинах.

Инфракрасную съемку можно производить ночью, при этом фиксируется тепло неодинаково остывающих объектов природы. Есть такое понятие – тепловая инерция пород. Таким образом, температурные различия объектов изменчивы от времени суток и года. Ветер охлаждает породы. Влажные места более холодные от испарения.

Рельеф тоже влияет на изображения – склоны, ровные поверхности отличаются друг от друга. Проявляются даже стога – застойная зона – одинаковое количество тепла слабо зависимая от факторов. Метод похож на геофизический, только объекты даются в изображениях.

На материалах инфракрасной съемки видны автострады, трассы железнодорожных линий, водопроводы, трубопроводы углеводородов, места их неисправностей – утечки. Тепловая съемка дает очень точно распределение вод при мелиоративных работах и позволяет существенно их скорректировать. Уточняются обводнения территорий и ландшафтные неблагополучия.

Результативна эта съемка при изучении городов их окрестностей и строительства. Есть пословица – где пьют там и льют. Фиксируются утечки тепла в холодное время года через открытые подъезды. Видны загрязнения рек стоками промышленных предприятий, как правило, неочищенными и теплыми. Тепловое загрязнение также наносит урон природной среде. Эти шлейфы загрязнений долго еще прослеживаются по течению.

На материалах рассматриваемой съемки видно все, что открыто и обводнено. Эти материалы пригодны также для характеристики важнейших (пускай известных) элементов геологического строения.

2.9 Радиолокационная съемка с самолетов

На примере Средней Азии, Камчатки и Крымской области приведены результаты радиолокационного зондирования, позволяющие определить степень увлажнения почв, заболачивание водоемов, провести инвентаризацию сельскохозяйственных культур. Радиолокатор бокового обзора «Торос», установленный на самолете АН-24, работал на длине волны 2,5 см; полоса обзора радиолокатора примерно 15 км при полете на высоте 5 км. Проявляется проникающая способность на несколько метров.

Применение этого метода возможно в метеорологии, океанологии (определение температуры воды в океане, составление карт сплошности льдов на примере Антарктики, определение возраста льда), в геологии (поиски полезных ископаемых неглубокого залегания, поиск геотермальных источников), в лесном хозяйстве (инспекция состояния растительного покрова, противопожарное патрулирование и т.п.) в гидрогеологии (определение солености или минерализации вод пресных водоемов на примере оз. Сиваш в Крыму, Каспийского моря).

Мелкомасштабность, высокая обзорность, «скульптурность» и генерализация изображения на этих снимках делают эффективным применения их для изучения структурно-тектонического строения. По материалам этой съемки на территории Казахстана выделены структуры, зоны разрывных нарушений. Дешифрировочными признаками при этом являлись: плановое положение маркирующих горизонтов, анализ эрозионной сети и форм рельефа, учет условий увлажнения.

В нефтяном районе США – Скалистых горах, несмотря на облачный покров, выявлены скрытые разрывные нарушения, контролирующие ловушки нефти и газа.

Тем не менее геологические объекты опознавать трудно. В горных районах метод применяется плохо из-за больших теней, закрывающих большие площади. На ровных площадях метод работает хорошо.

Озера, болота, ровные скальные поверхности, ровная тундра, влажные места – характеризуются более темным до черного фототоном. Вертикальные и крутые элементы рельефа – крутые скалы, обрывистые берега – светлые. Поверхность испещренная микроформами рельефа (бед-ленд) – темные.

Щебенка – темногофототона, а глыбы – светлого. Магнитные свойства на сигнале не сказываются. Снимки получаются отчасти перспективные из-за бокового обзора.

Контрольные вопросы

2. Планово-площадная АФС.

3. Спектрозональная АФС.

5. Радиолокационная съёмка.

3 Технология работы с аэрофотоснимками

3.1 Общие принципы и задачи геологического дешифрирования

В задачу геологического дешифрирования входят почти тоже, что и для геологического картирования:

1) выявление и прослеживание границ распространения горных пород, горизонтов и свит, состоящих из пород различного состава;

2) выявление, прослеживание и анализ стратиграфических и тектонических взаимоотношений массивов и комплексов горных пород между собой (последовательность залегания горных пород, элементы залегания, мощности, типы несогласия, тектонические нарушения, типы структур);

3) определение и анализ физико-геологических процессов, протекающих на поверхности (экзогенные геологические процессы, выветривание горных пород, их накопление, неотектоника, техногенная деятельность человеческого общества – техногенез);

4) изучение и анализ геоморфологических особенностей территории;

5) установление и изучение поисковых признаков, способствующих выявлению различных полезных ископаемых, а также при гидрогеологических и инженерно-геологических изысканиях.

3.2 Преимущества применения аэрофотоснимков в геологии

1) точное и объективное отображение морфологии и главнейших особенностей геологического строения земной поверхности, находящихся во взаимосвязи друг с другом;

2) большинство необходимых геологу деталей, обычно отсутствующих на топографических картах;

3) точное опознавание точек наблюдения и надежную их привязку;

4) достаточно обоснованное геологическое картирование не только по линии маршрутов, но и в пределах площадей, расположенных между маршрутами;

5) возможность одновременно наблюдать различные объекты, а также их контуры и взаимоотношения – при наземных исследованиях геолог наблюдает эти объекты разобщено и производит их увязку субъективно;

6) выявление геологических особенностей, а также поисковых признаков, какие невозможно обнаружить даже при детальных наземных маршрутах.

Перечисленные выше особенности аэроснимков позволяют резко повысить точность и объективность геологических карт и повысить производительность труда геолога.

3.3 Стереоскопические наблюдения

Для получения стереоскопического изображения двух смежных перекрывающих друг друга снимков (стереопары) существуют оптические приборы – стереоскопы. При большой тренировке можно добиться стереоэффекта и невооруженными глазами. Оптический способ получения стереомодели основан на разделении лучей левого глаза и правого, направленных на соответствующие снимки стереопары с помощью оптических приборов. Есть ряд приборов, но наиболее употребительны линзово-зеркальный стереоскоп АЗС-1 или АЗС-2, стереоскоп-пантограф-2 (CЛ-2) для стереоскопического просмотра снимка и фотосхемы или карты.

При просмотре стереопары объёмное изображение увеличено в 1.2-1.3 раза. Вертикальный масштаб при этом несколько превышает горизонтальный, поэтому рельеф проявляется резче.

Стереомодель позволяет более точно изучать и выделять геологические объекты и способствует более точному переносу отдешифрированных геологических объектов на топокарту.

3.4 Определение элементов залегания и мощности горных пород на аэроснимках

Выходы пласта осадочной породы, жильного тела или линии разрывного нарушения при благоприятных условиях могут быть прослежены на аэроснимках или фотоплане на значительном протяжении в виде непрерывного контура или в виде отдельных разобщенных участков, которые хорошо увязываются при дешифрировании. Путем несложных вычислений устанавливаются азимут простирания, направление и угол падения перечисленных выше объектов. Может быть определена и мощность пластов, выступающих на поверхность. Ориентировочно можно произвести замеры пластов, «просвечивающие» через небольшой покров рыхлых отложений.

Направление выхода пласта на любой поверхности будет совпадать с линией его простирания, если пласт залегает вертикально или если обнажается на горизонтальной поверхности. Во всех остальных случаях в условиях расчлененного рельефа линии выхода пласта не совпадают с его истинными значениями простирания. Он определяется графическим построением. Для этого под стереоскопом в интересующем нас месте снимка на линии выхода пласта на противоположных склонах берегов ложбины стока, оврага или ручья, или по обеим сторонам узких водоразделов, или тальвегах двух параллельных долин. При наличии фотоплана, с нанесенными на нем горизонталями, выбираются две точки, лежащие на пересечении выхода пласта с одноименной горизонталью. Это будет направление простирания.

Определение направления пласта, проектирующегося на склоне, на аэроснимках и на карте устанавливается из соотношения между направлением склона и очертанием выхода пласта, проектирующегося на этом склоне.

При горизонтальном залегании пласта выходы пласта на аэроснимке будут опоясывать склоны на одном гипсометрическом уровне, параллельно линиям горизонталей. Подобное отмечалось в бассейне р. Чаган на юго- западе области.

При вертикальном залегании пласта выходы его на снимках будут иметь линию, согласную с его простиранием и протягивающуюся независимо от форм рельефа, которые пересекает пласт. В таких случаях говорят: «Породы на голову поставлены». Подобные случаи отмечались в залегании метаморфических сланцев почти во всех мегаструктурах складчатого Южного Урала.

При наклонном залегании пласта (этот случай наиболее распространен) выход его на горизонтальную поверхность совпадает с линией его простирания и будет иметь прямолинейное очертание. При расчлененном рельефе очертания выходов пласта на снимках будут изгибаться; причем характер этих изгибов в основном и будет определять направление падения пласта, а именно:

1. Если падение пласта направлено в сторону наклона склона, но наклон пласта круче наклона склона, то изгибы выходов пласта будут выпуклой стороной обращены в сторону, обратную склону. При пересечении таким пластом склонов ручьев и ложбин стока и водоразделов между ними пласт будет изгибаться вверх по водоразделу, а в ручье будет образовывать угол, обращенный вершиной вниз по течению.

2. Если падение пласта направлено вглубь склона, то вся картина будет представлена наоборот.

3. В редких случаях, когда пласт падает в сторону склона, но под более пологим углом, пласт образует дугу, обращенную выпуклостью вниз по склону, а в тальвеге – угол, направленный вверх по ручью. Это можно ошибочно истолковать за падение внутрь склона. Относительно склона такой пласт имеет как бы обратное падение вглубь.

4. В случае, когда пласты падают под тем же углом и в ту же сторону, что и склон. На аэроснимке эти случаи дешифрируются по ассиметрии склонов долин, заложенных по линии простирания этих пластов. Выход такого пласта прослеживается в виде гладких каменных скатов – поверхностью пласта, а также прослеживается вдоль гребня водораздела часто в виде скалистой гряды по простиранию пласта.

На сглаженных водоразделах выходы пластов фиксируются в виде плавно изгибающихся дуг. В области развития узких острых водораздельных гребней – выходы имеют форму пластовых треугольников. Чем длиннее пластовые треугольники, расположенные в центральной части снимка, тем меньше угол падения слагающих пластов (пологие).

С увеличением угла падения слоев углы пластовых треугольников увеличиваются и превращаются в тупой. При вертикальном залегании выходы слоев на снимке представляют прямую линию, не связанную с особенностями рельефа и направление этой линии есть направление простирания.

J1-2cz – чульманская свита (песчаники, алерролиты, аргиллиты).

Рисунок 2 – Горно-таежная зона Восточной Сибири с денудационно-эрозионными формами рельефа. Область развития пологолежащих (угол 1-3°) юрских континентальных отложений. Особенности структуры, подчеркиваемые древесной растительностью, хорошо прослеживаются по линиям перегиба профиля склонов в местах выходов более плотных пород. На площади распространены песчаники, алевролиты, аргиллиты, угли (по М.Я. Попову).

Угол падения и направление падения определяются следующим графическим построением. Для этого из точки С пласта, расположенной ниже в тальвеге ручья (или оврага), опускается перпендикуляр на линию АВ. Он является линией падения пласта. От точки пересечения перпендикуляра и линии АВ (точка Д) откладывается отрезок ДЕ, равный в масштабе снимка разности высот между уровнями С и АВ. При отсутствии приборов, где эти высоты замеряются (стереометр, стереокомпоратор, фотовысотометр Лобанова), можно воспользоваться топокартой того же масштаба, что и аэроснимок, и определить это расстояние между уровнями. Расстояние между горизонталями по высоте на топокарте масштаба 1: 25 000, например, равняется 2,5 м. Полученное значение высот откладываем на линии АБ от точки Д и получаем точку Е. Соединив эту точку линией с точкой С, получим угол α, являющийся углом падения данного пласта. Замеряем его транспортиром и операция закончена. Он равен еще tg(тангенсу) а =tg. Эти операции можнопроизвести и на бумаге, перенеся на нее этот треугольник в большем масштабе. Некоторые другие способы измерения и вычисления замеров основываются на знании фокусного расстояния аэрофотоаппарата. В практике эти способы менее применимы.

Определение мощности пластов по аэрофотоснимку связано с их структурным положением. Точность при этом зависит от выразительности их в рельефе, наличия четких границ пластов и качества снимков. Рассматривая стереопару аэроснимков под стереоскопом, мы видим величину превышения между кровлей и подошвой пласта. Зная угол падения пласта, мы можем вычислить с помощью тригонометрических формул истинную мощность пласта или определить его графическим способом.

При горизонтальном (или почти) залегании пласта выход его на почти вертикальную стенку обрыва практически будет отражать истинную мощность пласта. Истинную мощность вертикального пласта мы наблюдаем при выходе его на дневную горизонтальную поверхность.

При наклонном залегании пласта при определенной мощности необходимо учитывать как угол падения пластов (предварительно измеренный) и угол поверхности склона в местах выхода пласта на поверхность. Строим в масштабе чертеж. Угол поверхности берем из карты. Замеряем по чертежу мощность. Это графический способ.

3.5 Методы дешифрирования

Прямой метод дешифрирования применяется только в геологически открытых районах, где коренные породы выходят на поверхность. Фототоновые различия, а также особенности структуры и рисунки изображения на снимках этих районов обусловлены геологическими телами, их окраской, вещественным составом, условиями залегания. Поэтому здесь возможно непосредственное отождествление выделенных на снимках объектов с геологическими телами и прямое сопоставление геолого-геофизических материалов с данными дешифрирования.

Прямой метод дешифрирования позволяет устанавливать поля развития горных пород различного состава и генезиса, границы стратиграфических подразделений осадочных и вулканогенных пород, характер их залегания, тектонические нарушения (пликативные и дизъюнктивные). Например, слоистые толщи образуют на снимках полосчатый рисунок, по которому можно судить о форме залегания отложений, переслаивании пород различного состава; по их выраженности в рельефе – об относительной устойчивости к процессам денудации.

По смещению слоев, маркирующих горизонтов, резкой смене фототона и рисунка изображения, вызванных сменой геоморфологического и геологического строения, дешифрируются разрывные нарушения. Особенно высок эффект применения дистанционных материалов в районах со сложным геологическим строением, где горные породы резко различаются по физико-механическим свойствам и устойчивости к выветриванию. Опытным путем установлено, что в открытых районах в результате полевых работ подтверждается до 90-100 % выявленных при дешифрировании объектов.

Контрасно-аналоговый (или контурно-геологический) метод дешифрирования используют как в геологически открытых, так и в геологически закрытых районах при работе с аэрофотоматериалами и космическими снимками всех уровней генерализации.

Замечено, что геологические объекты, аналогичные по строению и истории развития, имеют сходные изображения на снимках. На снимках эталонных участков проводится дешифрирование неоднородностей фототона и рисунков фотоизображения. Затем наземными полевыми исследованиями устанавливается геологическая природа отдешифрированных объектов, т. е. проводится их интерпретация. На основании результатов этих исследований составляются таблицы дешифровочных признаков. Таким образом, получают эталоны геологических объектов с их типичным фотоизображением, т.е. их «фотопортреты». При дешифрировании новых площадей задача сводится к отысканию объектов, сходных с «фотопортретом» эталонной геологической структуры.

Ландшафтное дешифрирование (ландшафтно-геоиндикационное) предусматривает выделение объектов ландшафта – индикаторов геологических структур, составление ландшафтно-геоиндикационных карт и их геологическую интерпретацию. Индикация – способность одних элементов ландшафта передавать свойство других. Геоиндикация – обнаружение геологических объектов с помощью элементов ландшафта.

Анализ признаков ландшафта тем четче, чем ближе геологический объект к поверхности. Поскольку этот метод косвенный, его эффективность зависит от степени изученности и закрытости районов. Он больше употреблен для крупно- и среднемасштабных работ. Геоиндикационный метод как более поверхностный особенно применим в гидрогеологии и инженерной геологии.

Признаки геоиндикации не могут быть безусловно перенесены на другие регионы как 1: 1. Факт установления связи признака и объекта не раскрывает их сущности. Недостатки этого метода:

2) неоднозначность толкования;

3) неэффективность в закрытых районах.

3.6 Последовательность работ с аэроснимками в геологических партиях

Предполевой этап. На снимки сначала выносятся тригопункты. На карту выносятся точки наблюдения и другой фактический материал предыдущих работ. Если масштаб результативных карт 1: 50 000, то заказываются аэроснимки масштаба 1: 25 000 два комплекта. На одном комплекте ведется дешифрирование; второй комплект снимков является контрольным.

Выделяются участки, различающиеся по рисунку фотоизображений, обусловленному характером рельефа, гидрографической сети, почвеннорастительного покрова и других компонентов ландшафта, прямо или косвенно отражающих геологическое строение.

Дешифрируются структурные линии и линии разрывных нарушений. Результаты дешифрирования снимков сопоставляются с комплексом геолого геофизических исследований и производится геологическая интерпретация выделенных по дешифрированию участков. Объекты дешифрирования подразделяются на достоверные и предполагаемые. Определяются элементы залегания, мощности толщ. Строятся профили. Геоморфологическая карта и карта четвертичных отложений составляются порознь или совместно в зависимости от насыщенности материала. Намечаются маршруты, горные выработки, скважины. Составляются подробные описания признаков дешифрирования геологических объектов.

Как уже отмечалось ранее, детальное дешифрирование начинается с переноса на рабочую фотосхему элементов разрывной и пликативной тектоники с карты результатов регионального дешифрирования. Если в пределах исследуемого района есть детально изученные участки (бурением, горными выработками), то они могут служить эталонными при установлении ландшафтных индикаторов разрывной и пликативной тектоники, оруденения и т. д.

Полевой этап. В процессе предполевого геоморфологического и геологического дешифрирования возникают вопросы, решить которые в камеральный период не представляется возможным. Все они могут быть решены только при непосредственном наблюдении объекта, т. е. в полевых условиях. В предполевой период составляется перечень таких неясностей и составляются маршруты для их разрешения. Во время полевых маршрутов легко уточняются на местности некоторые геоморфологические индикаторы: суффозионно-карстовые и собственно карстовые формы, эрозионные уступы и останцы, элювиальные развалы, речные террасы разбраковываются на пойменные и надпойменные, для последних устанавливается номер террасы.

В комплекс полевых исследований входят и аэровизуальные наблюдения (с самолета или вертолета), которые условно можно подразделить на региональные и детальные.

Региональные наблюдения проводятся с высоты 0,5 км, 1 км, 2 км. Они позволяют в короткий срок ознакомится с исследуемой территорией и получить представления о геологических и геоморфологических особенностях района. В этом случае они выполняют роль рекогносцировочных работ. Наблюдения с воздуха дают возможность одновременно наблюдать значительную площадь земной поверхности и помогают уточнить и выявлять зоны тектонических нарушений, региональные уступы, поверхности выравнивания, интенсивность расчленения рельефа, изучать речные террасы, выявлять аномальные участки речных долин, взаимосвязь отдельных морфоструктур и т. д.

Детальные аэровизуальные наблюдения выполняют, в основном, те же функции, что и региональные, но в более детальном масштабе. Высота облета обычно 200-300 м.

Время проведения аэровизуальных наблюдений в начале или конце полевого сезона.

Окончательная камеральная обработкарезультатов дешифрирования – в этот этап вносятся окончательные коррективы в результаты дешифрирования, схемы и карты приводятся в отчетный масштаб, проводится окончательная увязка геологических и аэрофотогеологических результатов.

3.7 Эффективность применения материалов аэрофотосъемки

К числу основных факторов, определяющих возможности метода, относятся как географические, так и геологические условия, влияющие на характер проявления на поверхности различных геологических объектов.

Географические факторы: строение рельефа, степень и характер его расчлененности, особенности климата, плотность растительного покрова, обводненность поверхности, антропогенез.

Геологические факторы: интенсивность и характер проявления неотектонических движений, литология пород, структурные особенности, цветовые различия, характер процессов выветривания, степень и характер трещиноватости, степень обводненности трещин, степень обнаженности коренных пород.

Географические факторы. Степень расчлененности рельефа сказываются на эффективности дешифрирования аэроснимков. Большая расчлененность рельефа и густота гидрографической сети повышают эффективность, В особенности когда между формами рельефа, гидросетью и геологическим строением имеется взаимосвязь. Часто формы рельефа являются дешифрировочным признаком. Так грядовый характер некоторых гор в Центральной части нашей области обуславливается соответствующим простиранием слоев и формаций горных пород, чаще всего субмеридионально ориентированных.

Климат может сказываться на условиях выполнения работ и их стоимости. Сюда относятся длительность безморозного и бесснежного периода. Эффективность возрастает в удаленных и труднодоступных районах. К ним относятся северные и высокогорные районы страны с коротким сезоном полевых работ, а так же в пустынных районах. С климатом связана интенсивность растительного покрова и развития лесов. По сгущению растительности прогнозируются (и по темным пятнам) близкое к поверхности расположение грунтовых вод (проницаемые породы). Избыточное увлажнение и излишняя засушливость ухудшают дешифрируемость аэрофотоснимков.

На эффективности применения аэрофотометодов сказываются также экономико-географические особенности регионов. Распространение населяемых пунктов, наличие дорог, возделывание площадей, наличие водных путей, аэродромов, развитие промышленности, так или иначе влияют на эффективность и стоимость работ использования аэрометодов.

Влияние человека на природу огромно. Это видно на аэроснимках. Природа, можно сказать, задавлена техногенезом. Площади городов промышленных предприятий, магистрали, трубопроводы, искажение растительности, горные разработки, распашка земель. Все это затушевывает, в какой-то мере, некоторые площади для изучения геологического строения.

Геологические факторы. Свойства горных пород и сложность геологического строения влияют на эффективность дешифрирования. Чем больше горные породы отличаются друг от друга по окраске, составу, крепости, степени трещиноватости и условиям залегания, тем лучше выражены, связанные с этими породами формы мезо- и микрорельефа и тем резче проявляются они в виде характерных рисунков на аэроснимках. Чем сильнее проявляются эти взаимосвязи, тем отчетливее горные породы и условия их залегания дешифрируются на снимках. Крепкие породы лучше выражены в рельефе, мягкие сглаживаются; образуются гривки и ложбины.

Большой эффект достигается в районах со сложным геологическим строением. Обычные методы здесь требуют больших затрат времени и средств.

Цветовые контрасты разных пород облегчают дешифрирование. Интенсивное рассланцевание затушевывает залегание пород. По направлению сланцеватости и трещиноватости на поверхности часто развиваются ложбины и понижения. Продольные разрывные нарушения, совпадающие по направлению с линейной складчатостью, дешифрируются с трудом.

Степень обнаженности горных коренных пород подразумевается степень отсутствия на их поверхности почвенно-элювиальных образований, рыхлых континентальных четвертичных отложений и растительного покрова. Присутствие этих перекрывающих горные породы элементов затрудняют их дешифрирование. Чем больше мощность рыхлых отложений и чаще залесенность, тем хуже условия дешифрирования снимков. Правда бывают исключения, когда растительность является одним из дешифрировочных признаков.

Как правило, неблагоприятными являются условия дешифрирования коренных пород на равнине, где они покрыты плащом мощных рыхлых четвертичных отложений, а также в высокогорных районах, где крутые склоны гор покрыты мощными осыпями обломочного материала. Однако, при небольших мощностях рыхлых отложений, на снимке по элювиальным высыпкам, выбросам из пор грызунов удается проследить простирание коренных пород. Часто достаточно хорошо читается трещинная тектоника массивов. Эффект «просвечивания» коренных пород сквозь покров рыхлых отложений в Оренбуржье наблюдается довольно часто.

В случае широкого развития четвертичных отложений аэроснимки эффективно используются для дешифрирования последних, для выявления генезиса и возраста, оконтуривания участков и установления их взаимоотношений.

Следует отметить, что все приведенные условия имеют лишь относительное значение. Производственный опыт показывает, что даже в наименее благоприятных по геологическойдешифрируемости районах изучения аэроснимков и аэровизуальные наблюдения, позволяют собрать большое количество ценных геологических и геоморфологических наблюдений.

Основным фактором, влияющим на условия дешифрируемостиаэроснимков в Оренбуржье, является степень обнаженности пород.

Контрольные вопросы

2. Что обеспечивает аэрофотогеологический метод?

3. Определение элементов залегания слоев осадочных пород на аэроснимках.

4. Методы дешифрирования.

5. Эффективность применения материалов АФС.

4 Дешифрировочные признаки

Дешифрировочным признаком называется любой признак, который виден на аэрофотоснимках невооруженным глазом или при помощи оптического прибора. К ним относятся компоненты ландшафта – растительность, почвы, гидросфера, рыхлые и коренные породы; тон снимка, зависящий от цвета пород; различные формы рельефа; рисунок поверхности зависящий от микрорельефа, характера обнаженности, распределения растительности, тональных особенностей.

Дешифрировочные признаки делятся на прямые и косвенные.

4.1 Прямые признаки

4.2 Косвенные признаки

Важнейшим индикатором геологических объектов является рельеф. Различные формы рельефа тесно связаны с рельефообразующими процессами и, следовательно, находятся во взаимосвязи со всеми природными объектами и явлениями. Важную роль играют элементы гидрографии: реки, озера, водохранилища, болота. Тесная связь структуры и густоты гидрографической сети с геологией и рельефом позволяет использовать, например, рисунок речной сети как основной ландшафтный признак при геологическом и геоморфологическом анализе.

4.3 Рисунки речной сети

Рассмотрим разновидности основных типов речной сети.

Древовидный (дендрический) рисунок речной сети, характеризуется беспорядочными извилистыми очертаниями довольно густой сети. Притоки могут впадать в реки под любым углом. Рисунок напоминает ветвистое дерево. Условия, которые способствуют формированию этого рисунка, являются однородные. Нет крутых склонов, крутопадающих пород, ослабленных зон. В большинстве районов развития данного рисунка отмечены несцементированные пески, глины. Направления водотоков здесь случайно. При отсутствии зон тектонических нарушений могут развиваться в районах развития метаморфизованных осадочных пород. В общем, это аккумулятивные равнины – плато.

Прямоугольный рисунок речной сети обычно развивается вдоль пересекающихся систем разломов или трещин. Такой тип рисунка может появиться в районах развития крупных тел кристаллических пород и обширных плато, сложенными горизонтальными или полого падающими осадочными породами.

Системы трещин при этом пересекаются почти под прямым углом. При наличии систем трещин, развитых под углами менее 90 °, рисунок речной сети называется диагональным, образованный в тех же условиях геологической среды.

Решетчатый рисунок речной сети характерен единым направлением основных водотоков. Мелкие притоки чаще всего образуют прямой угол с основными водотоками. Встречается данный рисунок чаще всего в районах развития параллельных складок с слоями пород различной крепости, параллельно ориентированных блоков, разделенных разломами.

Радиальный рисунок гидросети приурочен к округлым или овальным в плане возвышенностям. Водотоки берут начало в центральной части возвышанностей и сбегают по склонам. Многие купола, где этот рисунок проявляется, могут иметь разное геологическое строение.

Рисунок 9 – Кольцевидный рисунок речной сети в сочетании с радиальным рисунком.

Рисунок 11 – Виды расположения эрозионной сети (по Г.В. Гальперову)

Кольцевидный рисунок гидросети часто развивается вместе с радиальным вокруг сильно расчлененных куполов и куполовидных антиклиналей.

Параллельный рисунок гидросети обуславливается расположением водотоков почти параллельно друг другу примерно на одинаковом расстоянии. Такая картина наблюдается на обширных поверхностях, наклоненных в одну сторону. В этом случае водотоки приурочены к податливым слоям параллельных толщ.

Ветвисто-метельчатый рисунок – индикатор однородных плотных пород, моноклинально залегающим под небольшим углом.

Узковитвистый (субпараллельный рисунок) – индикатор первичных наклонных равнин (морских, озерных и др.).

Ветвисто-перистый рисунок – индикатор лесов, лессовидных суглинков, глин.

Ветвисто-веерообразный рисунок – индикатор аллювиально- пролювиальных конусов выноса.

Ветвистый ассиметричный рисунок – индикатор плотных относительно однородных пород с моноклинальным залеганием пластов (куэстовые гряды).

Диагонально-древовидный рисунок – индикатор моноклинально падающих неоднородных толщ, перекрытых рыхлыми отложениями.

Параллельно-диагональный рисунок – индикатор моноклинально или полого залегающих толщ.

Различные озера дешифрируются уверено. Водохранилища тоже. Самые большие из них, в области это – Жетыколь, Шалкар-Ега-Кара и Айке, находятся на крайнем востоке Оренбуржья. Нечасто встречаются мелкие озера. Большое распространение получили мочежины – влажные часто пересыхающие участки округлой формы с густой болотной травой, и участки периодически увлажняющихся солончаков. У последних, вследствие засолоненности, растительность ограничена.

Мочежины и солончаки распространены большей частью на юге области и в Зауральной равнине.

а) дешифрирование озерной растительности;

б) дешифрирование трещинной тектоники.

Рисунок 13 – Озеро Айке. Восток Оренбургской области

Рисунок 14 – Рисунок гидросети и локальные структуры (по Г.И. Раскатову)

Конец ознакомительного фрагмента. Full version